39) Zmienne systemowe

No dobra wprowadzenie mamy już za sobą. W tym wpisie wprowadziłem Cie w świat zmiennych Macro. Opisałem wstępnie czym one są i jakie ogromne korzyści daje używanie ich w programowaniu. Dodatkowo wyjaśnione tam jest jaka jest różnica między zmiennymi, a parametrami.

Jako, temat jest naprawdę obszerny rozłożyłem go na kilka wpisów.

Zmienne systemowe

To o nich jest dzisiejszy wpis.

  • Zaczynają się od #1000 w górę. ( liczba może być czterocyfrowa lub pięciocyfrowa)
  • Zmienne systemowe nie są wyświetlane na ekranie wyświetlacza

To bardzo dużo zmiennych, a co za tym idzie bardzo dużo do zapamiętania. Ale nie martw się. Po to jest ta strona żebyś nie musiał wszystkiego pamiętać. Wystarczy, że wejdziesz na przemoncnc.pl i dzięki spisowi treści lub za pomocą wyszukiwarki łatwo znajdziesz to co w danym momencie cię interesuje .

Numery są zdefiniowanie przez Fanuca. Nie da się ich zmienić. W zależności od wersji oprogramowania lub od modelu maszyny numery mogą się zmieniać. Dlatego podstawą jest posiadanie książki obsługi maszyny. Dla każdej z osobna.

Zmienne systemowe nie mogą być pokazane bezpośrednio na wyświetlaczu (w większości maszyn ma zastosowanie ta zasada). Ale musi być jakiś sposób sprawdzenia ich obecnej wartości. Ta metoda to “transfer wartości”

W programie lub w MDI niektóre zmienne systemowe muszą być przeniesione do zmiennych lokalnych lub wspólnych. W zależności od źródła metoda może się różnie nazywać: zastępowanie zmiennych, redefinicja zmiennych, transfer wartości.

Przykład 1: (Fanuc 15M)

#105=#5221    

Wartość X z bazy G54 zostanie przetransferowana ze zmiennej systemowej #5221 do zmiennej wspólnej #105

Przykład 2: (Fanuc 15M)

#106=#5222

Wartość Y z bazy G54 zostanie przetransferowana ze zmiennej systemowej #5222 do zmiennej wspólnej #106

Zmienne lokalne i wspólne mogą być wyświetlone na monitorze.

Grupy zmiennych systemowych

Jak już pisałem wcześniej w zależności o wersji oprogramowania numery zmiennych mogą się różnić, a co za tym idzie znaczenie danego parametru będzie miało inne znaczenie w innej wersji oprogramowania. Ty jako programista musisz wiedzieć jakiego oprogramowania używa dana maszyna i jakie skutki będzie miało wywołanie konkretnej zmiennej. Program który będziesz pisał będzie mógł być używany wyłącznie na danej wersji oprogramowania, a nawet tylko na konkretnej maszynie.

Przez te wszystkie lata Fanuc wprowadził sporo wersji swojego systemu. Omawiam tylko te najnowsze i najczęściej używane. FS (Fanuc Series)

  • FS-0
  • FS-10
  • FS-11
  • FS-15
  • FS-16
  • FS-18
  • FS-21
  • Wyższe wersje

Oczywiście są inne wersja takie jak Fanuc 3, który jest właściwie podobny do Fanuc-a 0. Fanuc 6 jest dziadkiem wersji 10/11. Wszystkie te sterowania mają zastosowanie we frezarkach FS-xxM np. FS-16M, jak i w tokarkach FS-xxT np. FS-15T. Działają na nim elektrodrążarki, szlifierki i kilka innych rodzajów maszyn. Ja zajmę się toczeniem i frezowaniem.

Zmienne systemowe dzielą sie na dwie grupy:

  • Zmienne do odczytu i do zapisania
  • Zmienne tylko do odczytu

Te pierwsze można zmienić za pomocą programu lub w trybie MDI. Oczywiście jest również możliwość ich odczytania , a zapisane wartości będą przetworzone przez system.

Druga grupa może być wyświetlana za pomocą zmiennych lokalnych lub wspólnych. Nie ma możliwości ich zmiany przez użytkownika. Stąd ich nazwa i to ich najczęściej będziesz używał.

Fanuc Model 0 vs inne wersje

Fanuc Fs-0 w porównaniu do innych wersji jest najuboższy. Oferuje najmniejszą liczbę zmiennych. Jest to szczególnie zauważalne przy parametrach odpowiedzialnych za offset narzędzia. Mimo to rozpocznę od tej wersji. Pod spodem będę podawał zakresy parametrów za co one są odpowiedzialne i jak ich używać

Upewnij się, że znasz znaczenie konkretnego parametru zanim zaczniesz cokolwiek programować. W razie wątpliwości sprawdź instrukcję obsługi dołączoną do maszyny.

Sygnały interfejsu (#1000-#1135)

Gdy parametr 6001 MIF, bit 0 ustawiony jest na 0.

Numer zmiennejFunkcja
#1000 do #1015Zmienne są używane do przesyłania szesnastobitowego sygnału z PMC do zwykłego macro jeden po drugim.
#1032Ta zmienna jest używana do przeczytania całego szesnastobitowego sygnału na raz
#1100 do #1115Zmienne służą do wysłania sygnału szesnastobitowego ze zwykłego macro do PMC jeden po drugim
#1132Ta zmienna służy do wysłania całego szesnastobitowego sygnału na raz
#1133Ta zmienna jest używana do wysłania całego 32 bitowego sygnału ze zwykłego macro do PMC. Wartości od -99999999 do +9999999 mogą być użyte dla tej zmiennej.

Gdy parametr 6001 MIF, bit 0 ustawiony jest na 1.

Numer zmiennejFunkcja
#1000 do #1031Zmienne są używane do przesyłania 32-bitowego sygnału z PMC do zwykłego macro jeden bit po drugim.
#1100 do #1131Zmienne służą do zapisania 32-bitowego sygnału ze zwykłego macro do PMC jeden bit po drugim
#1032 do #1035Te zmienne są używane do przeczytania całego 32-bitowego sygnału z PMC do Macro na raz. Można użyć cyfry od -99999999 do +99999999
#1132 do #1135Te zmienne są używane do zapisania całego 32-bitowego sygnału z Macro do PMC na raz. Można użyć cyfry od -99999999 do +99999999

Wartości kompensacyjne narzędzi (#10000-#13400)

Zapisuj i czytaj wartości kompensacyjne narzędzi. Jak to robić pokazuje poniższa tabela.

Numer korektoraKompensacja długości narzędzi HKompensacja promienia narzędzia D
Geometria Zużycie Geometria Zużycie
1
#11001 lub #2201
#10001 lub #2001
#13001
#12001
:::::
200#11200 lub #2400#10200 lub #2200#13200#12200
:::::
400 #11400#10400#13400#12400

Generowanie własnych alarmów(#3000 i #3006)

#3000 to bardzo fajna opcja. Pozwala Ci stworzyć do 201 swoich własnych alarmów. To, że napisałem alarm nie znaczy, że musi pojawić się jakiś problem. Może chcesz dosadnie przekazać coś operatorowi, ta zmienna jest dla Ciebie wybawieniem.

#3006 poza tym, że robi to samo co #3000 dodatkowo zatrzymuje program.

Numer zmiennejFunkcja
#3000Po przypisaniu wartości od 0 do 200 dla zmiennej #3000 na wyświetlaczu wyświetli się alarm (maksymalnie 26 znaków). Numer alarmu to suma 3000 i wartości przypisanej do zmiennej.
#3006Po przypisaniu wartości od 0 do 200 dla zmiennej #3006 maszyna zatrzyma program a na wyświetlaczu wyświetli się alarm (maksymalnie 26 znaków).

Przykład 3:

#3000=4(USIADZ SOBIE)

Po wczytaniu tego bloku wyświetli się komunikat zapisany w nawiasach, o numerze 3004.

Zmienne czasowe (#3001, #3002, #3011, #3012)

Chcesz sprawdzić ile czasu maszyna pracuje? A może jaki dzisiaj jest dzień, lub która godzina. Nie ma sprawy.

Numer zmiennej Funkcja
#3001Po każdy włączeniu maszyny sterownik liczy czas od 0 do ‭2 547 483 648‬ w milisekundach
#3002Maszyna liczy całkowity czas gdy była w cyklu. Jednostka do godziny. Nie zeruje się po wyłączeniu lecz gdy osiągnie wartość ‭9 544.371767‬.
#3011Ta zmienna wyświetla datę (rok/miesiąc/dzień)
Data jest wyświetlona jako nieprzerwany numer, Np. 02 stycznia 2020r będzie wyświetlała jako 20200102
#3012Ta zmienna wyświetla godzinę (godz/min/sek). Godzina jest wyświetlona jako nieprzerwany numer. Np. 14:35 i 15 sekund wyświetli jako 143515.

Ilość wykonanych detali (#3901, #3902)

Numer zmiennej Funkcja
#3901Detale wykonane do tej pory
#3902Liczba detali do wykonania

Informacja modalna (#4001-#4130)

Co to są funkcje modalne pisałem już w tym miejscu. Dzięki zmiennym możesz się dowiedzieć, która funkcja jest aktywna w danej grupie.

Numer zmiennej FunkcjaNr. grupy
#4001G00, G01, G02, G03, G33, G75, G77,G78,G791
#4002G17, G18, G192
#4003G90, G913
#4004G22, G234
#4005G94, G955
#4006G20, G216
#4007G40, G41, G427
#4008G43, G44, G498
#4009G73, G74, G76, G80-G899
#4010G98, G9910
#4011G50, G5111
#4012G66, G6712
#4013G96, G9713
#4014G54-G5914
#4015G61-G6415
#4016G68, G6916
::
#4022G50.1, G51.120
#4102B
#4107D
#4109F
#4111H
#4113M
#4114Numer bloku
#4115Numer programu
#4119S
#4120T
#4130P (numer aktualnie wybranego dodatkowego punktu zerowego przedmiotu)

Pozycja narzędzia (#5001#5067)

Dzięki tym zmiennym przeczytasz różne pozycje w zależności op potrzeb. Tych zmiennych nie da się wpisać, można ich tylko przeczytać.

Numer zmiennej Dane polożenia
Układ współrzędnych
Kompensacja położenia długości/promienia narzędziaOperacja odczytu w czasie ruchu
#5001-#5007Pozycja punktu końcowego bloku osi nr 1 - Pozycja punktu końcowego bloku osi nr 7Układ współrzędnych przedmiotuNieuwzględnioneZałączone
#5021-#5027Pozycja bieżąca osi nr 1 - Pozycja bieżąca osi nr 7 Układ współrzędnych maszynyUwzględnioneWyłączone
#5041-#5047Pozycja bieżąca osi nr 1 - Pozycja bieżąca osi nr 7 Układ współrzędnych przedmiotuUwzględnioneWyłączone
#5061-#5067Pozycja pominięcia osi nr 1 - Pozycja pominięcia osi nr 7 Układ współrzędnych przedmiotuUwzględnioneZałączone

No dobra trochę się rozpisałem. Najlepsze, że te wszystkie tabelki to tylko namiastka tego wszystkiego co znajdziesz w Podręczniku Operatora dołączonym do twojej maszyny. Ja chciałem dać ci tylko zarys a bez tych tabelek nie było by to możliwe.

Sporo tego wyszło, a to dopiero druga część. Następny wpis będzie o podprogramach.

Tych co chcą śledzić moje kolejne wpisy zapraszam do subskrybowania za pomocą Newslettera.

W razie pytań zapraszam do komentowania.

Pozdrawiam PrzemoCNC

38) Programowanie Makro (parametryczne), Fanuc-wprowadzenie

Programowanie parametryczne, zmienne systemowe Fanuc, programowanie Macro B Fanuc.

Brzmi tajemniczo?

Tak naprawdę takie nie jest. To są tylko modne słowa oznaczające kilka prostych zagadnień. Opanowanie ich wcale nie jest trudne. Mało tego. Gdy już będziesz wiedział co do czego, posiądziesz ogromną moc i kontrolę. Porównywalną, a nawet większą niż pisanie programów za pomocą cykli obróbczych. Ba, sam będziesz tworzył swoje cykle. Nie będziesz już skazany na algorytm jakiegoś tam gościa z Fanuca.

To ty będziesz tworzył algorytmy. Dzięki temu będziesz wstanie::

  • wykonywać skomplikowane obliczenia w środku programu
  • zapętlać program w dowolny sposób
  • przeskakiwać w przód i w tył programu
  • stawiać warunki
  • zmieniać parametry systemowe
  • liczyć sztuki
  • generować alarmy

Pod poniższymi linkami znajdziesz wszystkie artykuły poświęcone tej tematyce

Ale po kolei.

W trakcie kilku kolejnych wpisów będę się starał wyjaśnić jak tego wszystkiego dokonać. Pod wieloma względami programowanie parametryczne jest najwyższym poziomem opanowania dla każdego programisty.

Czy na mojej maszynie jest zainstalowana opcja programowania Macro (parametryczne)?

Zdalnie nie jestem Ci w stanie na to pytanie odpowiedzieć. Ale mam sposób żebyś sam mógł to sprawdzić. Wejdź w tryb MDI i wpisz :

#105=1

Wciśnij przycisk START CYCLE. Jeśli nie wyskoczył Ci alarm typu: “błąd składni” (syntax error), lub “adres nie znaleziony” (address not found), na twojej maszynie jest możliwość programowania Macro. W przypadku wystąpienia błędu jedynym rozwiązaniem jest zwrócenie się do serwisu. Oni bez problemu to odblokują. Oczywiście nie za darmo.

Fanuc Macro B

Jest najczęstszym ” językiem” programowania makr. Nie wszystkie maszyny obsługują programowanie Macro B, niektóre obsługują niepełną wersję, inne oparte są na innym “języku”. Nie jestem w stanie opisać każdego z osobna. Ale zasady jakimi się rządzą są w zasadzie podobne.

Programowanie parametryczne vs programowanie G-kodami

Różnica między tymi dwoma sposobami programowanie jest ogromna. Taka jak algebry nad arytmetyką.

Dam Ci przykład :

Załóżmy, że masz 10 chlebów po 2.50zł za sztukę.

Używając arytmetyki łatwo policzymy 10*2,5=25zł

W algebrze H to ilość chlebów, a C to cena za 1 bochenek. Tworząc wzór H*C jesteśmy w stanie policzyć cenę za dowolną liczbę chlebów kosztujących każdą cenę.

Wracając do programowania. Dzięki parametrom a raczej dzięki zmiennym zyskujemy niesamowitą przewagę. Wyobraź sobie, że masz do wykonania 20 rożnych detali i w każdym jest ten sam kanałek. Jedyna różnica to średnica. Nie będziesz już musiał pisać programu na każdy z osobna. Wystarczy do wartości X dopisać zmienną, załóżmy #1 kórą będziesz mógł zmieniać w zależności od wykonywanego detalu.

To tylko jeden przykład. Zastosowań są tysiące o ile nie miliony.

Czy miałeś kiedyś taki przypadek, że brakowało ci czegoś w standardowym cyklu? Załóżmy, że posuw na wejściu chciałbyś mniejszy lub chciałbyś żeby obroty po 2 przejściach się zwiększyły. Od teraz Ty sam będziesz tworzył cykle niestandardowe i prawie nic nie będzie Cię ograniczać.

Omówienie całego zagadnienia zamie mi kilka wpisów. Mało komu chce się czytać długie teksty, dlatego podzielę to wszystko na kilka, mam nadzieję łatwych do przyswojenia rozdziałów.

Dzisiaj zajmuję się podstawami, wyjaśniam co do czego. Następnie opiszę jak się posługiwać naszą nową zabawką.

Parametry i zmienne makr to dwie różne rzeczy.

Firmy nie produkują starowinków dedykowanych do danych maszyn. Tworzą takie same sterowniki ale z możliwością adaptacji do danej maszyny i potrzeb. Wewnątrz kontrolera znajduje się zbór ustawień, które nazywa się parametrami. To one pozwalają dostosować maszynę do sterownika. Np. :

  • Prędkości wrzeciona
  • Szybkie przejazdy
  • Punkty bazowe
  • I wiele wiele innych

Nigdy nie zmieniaj parametrów systemowych chyba, że na 100% wiesz co robisz.

Zmiany mogą być nieodwracalne. Dodatkowo upewnij się, że masz kopię zapasową na wypadek awarii baterii. Zazwyczaj jest dostępna procedura zgrania ustawień na dysk zapasowy.

Zmienne są… No właśnie czym one są. Jakby to najprościej wyjaśnić? To tak jakby używać zmiennych z algebry w G-kodzie. Można im przypisać dowolną wartość. A kiedy są wywoływane w programie wczytują ostatnią przypisaną im wartość.

Składnia zmiennej to # i numer zmiennej. W zależności od maszyny maksymalna liczba zmiennych może się różnić.

Dla przykładu, chcąc przypisać wartość 10 dla zmiennej #1, zapiszesz

#1=10

Jest jedna zmienna której nie można przypisać żadnej innej wartości, poza tą która jest z góry ustalona. Jest nią #0, jej wartość zawsze będzie wynosić 0.

Zmienne mieszczą się w różnych zakresach. Poniższa tabela pokazuje co system Fanuc myśli o zmiennych znajdujących się w danym zakresie.

Numer zmiennych Typ zmiennychFunkcja
#0NullNie można przypisać żadnej wartości dla #0. Jej wartość zawsze będzie wynosić 0.
#1-#33
Zmienne lokalneZmienne lokalne służą do przekazywania argumentów do makr oraz do tymczasowego przechowywania danych w pamięci tymczasowej. Maszyna nie zapamięta danych po jej wyłączeniu. Konieczne będzie ponowne ich wczytanie. Zagnieżdżają się w podprogramach. Upewnij się że rozumiesz jak to działa.
#100-#199
#500-#999
Zmienne wspólneZmienne wspólne jak sama nazwa wskazuje, są dzielone przez wszystkie twoje programy makro. Po wyłączeniu maszyny parametry #100-#199 są zerowane. #500-#999 zapamiętują wprowadzone dane do następnego uruchomienia maszyny.
#1000- wzwyż Zmienne systemoweZmienne systemowe służą do informowania o tym co robi kontroler. Np. obecna pozycja. Nie przypisuj im żadnej wartości, chyba że na 100% wiesz jak one działają.

Weź pod uwagę, że przedziały mogą się różnić w zależności od zainstalowanego oprogramowania. Zwłaszcza innego niż Fanuc

Nasuwa się pytanie:

Których zmiennych używać?

Zmienne Systemowe i Lokalne mają specjalne zachowania. Wstrzymaj się dopóki nie zrozumiesz tych zachowań. Zmienne systemowe odnoszą się do konkretnych rzeczy w sterowaniu i nie możesz ich używać jako ogólnego przeznaczenia. Natomiast zmienne lokalne wykazują zachowanie “zagnieżdżania” makr. Zanim zaczniesz je używać poczytaj o podprogramach makro. Jeśli zrozumiesz ich zachowanie będziesz mógł ich używać.

Zmienne wspólne, to od nich zacznij programowanie na zmiennych.

Do których adresów mogę dołączać zmienne?

Prawie do wszystkich. Łatwiej będzie wymienić te do których nie można.

  • Nie można podstawiać zmiennych do numeru programu
  • Nie można numerować bloków za pomocą zmiennych
  • Pomijanie bloku /1 jest dozwolone ale /#1 już nie
  • WHILE..DO..END adresy: DO1 jest dozwolone, DO#1 nie

Jak widzisz nie ma tego za dużo.

No dobra wystarczy na dzisiaj. W następnym rozdziale opiszę zmienne systemowe. Jeśli chcesz być na bieżąco, zapraszam do subskrybowania za pomocą Newslettera zlokalizowanego po prawej stronie. W razie pytań proszę o komentarze.

Pozdrawiam PrzemoCNC

37) G40, G41, G42 Kompensacja promienia narzędzia Frezowanie

Po co jest kompensacja promienia narzędzia pisałem już w tym miejscu, przy okazji wyjaśniania G kodów dla tokarek. Dzisiaj opiszę jak wygląda kompensacja na frezarkach.

Zastosowanie kompensacji frezu pozwala programiście pisać program dokładnie tak jak na rysunku. Bez niej pisząc program należy znać rozmiary narzędzi i ich korekty, normalnie wpisywanie w offsecie.

Używając G41/G42 można stosować różne średnice narzędzi bez zmiany programu. Jedyne co, to trzeba prawidłowo określić promień narzędzia w offsecie. Dzięki tym G kodom można bardzo łatwo korygować wymiary detalu poprzez zmiany w zużyciu narzędzia.

Jak to wygląda w praktyce?

G41 profil zewnętrzny
G41 profil wewnętrzny
G42 profil zewnętrzny
G42 profil wewnętrzny

G40 odwołuje korekcje

G40 wpisz po skończonej obróbce danego profilu, przy wyjeździe z materiału.

Adres H czy D?

Podobnie jak przy kompensacji długości narzędzia G43/G44 należy podać adres korektora. I tu pojawia się pytanie z nagłówka.

Wszystko zależy, którą wersję oprogramowania posiada twoja maszyna A, B, C.

Jak widać na załączonym obrazku każda wersja ma inny rodzaj tabeli w offsecie.

Jeśli twoja maszyna pracuje na typie A i B zauważysz, że tabela jest współdzielona. Jedna kolumna odpowiadająca za geometrię zarówno długości jak i promienia narzędzia. W tym wypadku obok G41/G42 należy wpisać adres H.

Jest sporo narzędzi, które nie wymagają uwzględnienia promienia narzędzia w programie, ale za to wszystkie narzędzia wymagają korekcji długości. Co zrobić jeśli potrzebujemy podać i to i to?

Należy jednemu narzędziu przypisać dwa korektory. Jeden odpowiedzialny za długość drugi za promień. Dlatego ten typ nazywa się współdzielony.

Dla przykładu narzędzie T05 wymaga uwzględnienia długości i promienia narzędzia w programie. Oczywiste jest, że nie można użyć tego samego korektora.

Rozwiązanie jest bardzo proste: za długość będzie odpowiadał taki sam korektor jak nr narzędzia, a teraz powiększ tą wartość o 30, 100, 200. Ta wartość będzie odpowiadała za promień.

Typ A

Typ B ma jedną dodatkową kolumnę odpowiadającą za korekcję zużycia, ale ciągle działa na zasadzie współdzielenia.

Typ B

Typ C posiada już osobną tabelę dla długości i dla promienia. W tym wypadku używając polecenia G43 użyj adresu H, a dla G41/G42 użyj adresu D.

Typ C

Myślę, że tyle na dzisiaj. W razie jakichkolwiek pytań zapraszam do komentowania. A i zapraszam do subskrybowania za pomocą zakładki newsletter

Pozdrawiam PrzemoCNC

36) G76 cykl gwintowania (one line format)

Jakiś czas temu robiłem serie wpisów o gwintowaniu na tokarce, między innymi wyjaśniałem cykl G76. Wydawało mi się, że temat wyczerpany. Nic bardziej mylnego.

Dostałem kilka maili od was, z zapytaniem o cykl G76, tylko że w wersji jedno-liniowej tzw. One Line Format.

Wielu z was interesuje wykonanie cyklu gwintowania w ten sposób:

I wcale się wam nie dziwie bo to jest najlepszy sposób na wykonanie gwintu.

Co mam na myśli mówiąc najlepszy?

Przy głębszych gwintach płytka pracując tak jak na obrazkach poniżej jest narażona na spore opory, co wpływa na jakość wykonania oraz na trwałość samej płytki.

Tak się składa, że cykl G76 w wersji One Line. Posiada opcję wyboru strategii obróbki. Ale wszystko po kolei.

Cykl G76 w prostej formie

G76 X...Z...I...K...D...A...P...F...

X– Średnica końcowa gwintu

Z-Pozycja końca gwintu

I– Wartość pochylenia gwintu

K– Głębokość gwintu (podajemy w milimetrach)

D– Głębokość pierwszego przejścia

A– Kąt gwintu (jest 6 rodzai)

A0Proste wejścieISO
A29Gwint trapezowy ACMEANSI
A30Gwint trapezowyDIN 103
A55Gwint rurowy WhitworthaBSW, BSP
A60Standardowy gwint 60°Angielski Metryczny
A80Niemiecki gwint pancernyPG

P– Strategia obróbki

F– Posuw

Zaznaczam, że ten rodzaj gwintowania działa na wersjach Fanuc 10T/11T/15T. Na nowszych też podobno działa. Ale osobiście nie sprawdzałem .

Chyba tyle na dzisiaj.

Zapraszam do subskrybowania i komentowania.

Pozdrawiam PrzemoCNC

35) G43, G44, G49 kompensacja długości narzędzia

Fanuc podobnie jak i inne sterowania CNC posiadają 3 G kody odpowiedzialne za kompensację długości narzędzia. Są to kody przygotowawcze.

G43 G44 G49

Odpowiadają one wyłącznie za oś Z. Ale nie wystarczy samo wpisanie G43. Dodatkowo w tym samym bloku musi być uwzględniony adres korektora. Określa się go za pomocą litery H. Dla przykładu H05 wywołuje korekcję długości narzędzia z offsetu dla pozycji nr. 5. Jest to różnica długości pomiędzy sondą, a obecnie wybranym narzędziem.

Dzięki funkcji G43 jest ona uwzględniana w programie podczas obróbki.

Tutaj masz przykład zapisu

N10 G43 Z1 H05

Czyli uwzględniając długość narzędzia nr. 5 maszyna najedzie 1mm nad materiałem w osi Z.

Teoretycznie powinno wyglądać to w ten sposób, że jeśli narzędzie jest dłuższe niż sonda używamy G43, natomiast jeśli jest krótsze powinno się używać polecenia G44. “Teoretycznie”. (To tylko jedna z kilku metod pomiaru narzędzi na frezarce. Opiszę je szerzej za jakiś czas).

W praktyce używa się wyłącznie G43. Nie ma chyba rzadziej używanego G kodu niż G44. Narzędzia jeśli są krótsze od sondy, w offsecie zapisuje się ich z wartością ujemną, tak jak na powyższym zdjęciu.

Dlaczego?

Chodzi o czas i prostotę. Programista nie będzie się zastanawiał jakie będą długości narzędzi podczas pisania programu.

Dodając wartości ujemne są one odejmowane. Natomiast dodając do siebie wartości dodatnie będą ona zsumowane. Prosta matematyka.

Tak więc jeśli coś jest proste to po co to komplikować

Wracając do naszego przykładu

N10 G43 Z1 H05

Podczas pomiaru wartość wynikająca z różnicy pomiarów jest ładowana do parametru H. W naszym przypadku jest to H05.

W tabeli jest -12,332. Nasze narzędzie jest o 12,332mm krótsze niż sonda.

Piszę maszynie, że ma najechać 1mm nad materiałem. I to właśnie ona zrobi. Przynajmniej tak się wydaje. To co na prawdę ona zrobi, to najazd na Z-11,332, bez potrzeby modyfikowania programu. W ten sposób unikamy możliwych kolizji, a program jest dużo łatwiejszy do napisania.

G49 służy do odwołania kompensacji danego narzędzia. Gdy skończy ono już swoją pracę i będziesz chciał wybrać inne.

Dziękuję za uwagę 🙂

Tradycyjnie zapraszam do subskrybowania za pomocą newslettera i komentowania.

Pozdrawiam PrzemoCNC

33) G07.1 Interpolacja cylindryczna

Powyższy kod jest opcjonalny a co za tym idzie nie wszystkie maszyny go czytają.

Najczęściej będzie Ci on potrzebny na tokarce wyposażonej w żywe narzędzie, ale nie tylko. Na frezarkach z czwartą osią obrotową również jest bardzo przydatną funkcją.

Więc do czego on służy?

Jakby to napisać najprościej? G07.1 spłaszcza oś obrotową.

Załóżmy, że mamy taki detal:

Programowanie takiego kształtu może być kłopotliwe, zwłaszcza w przypadku ruchów kołowych osią obrotową. I zapewne już się domyślasz, że interpolacja cylindryczna znacznie upraszcza pisanie. G07.1 pozwala programiście spłaszczyć ruchy osi obrotowej, traktując je jak ruchy osi liniowej.

Pierwszy obrazek pokazuje detal. Drugi pokazuje ten sam detal tylko kształt jest tak jakby rozwinięty.

Najlepiej zobrazuje to poprawnie zapisany program i symulacja tego programu:

Przykład 1:

Detal pokazany na wcześniejszym rysunku będzie wykonany na tokarce z żywym narzędziem i sterowaną osią C.

O0002 (PRZYKLAD 1 INTERPOLACJA CYLINDRYCZNA)
N15 T0505 (Frez palcowy fi 5mm)
N25 M13 (Włączenie obrotów na żywym narzędziu CW)
N30 G97 S2000
N32 M52 (Pozycjonowanie osi C włączone )
N35 G07.1 C19.1 (Uruchamiam interpolację cylindryczną / podaję promień detalu )
N37 G94 F200
N40 G0 X45 Z-5
N45 G1 X35 C0 Z-5
N50 G1 Z-15 C22.5
N55 Z-5 C45
N60 Z-15 C67.5
N65 Z-5 C90
N70 Z-15 C112.5
N75 Z-5 C135
N80 Z-15 C157.5
N85 Z-5 C180
N90 Z-15 C202.5
N95 Z-5 C225
N100 Z-15 C247.5
N105 Z-5 C270
N110 Z-15 C292.5
N115 Z-5 C315
N120 Z-15 C337.5
N125 Z-5 C360
N130 X45
N135 G07.1 C0 (Odwołuję interpolację)
N140 M53 (Wyłączam pozycjonowanie osi C)
N145 G0 X80 Z100 M15
N150 M30

I tym sposobem mamy kolejny G kod za sobą. Do następnego

Pozdrawiam Przemocnc

32) Gwintowanie Higbee

Gwint Higbee to modyfikacja istniejącego gwintu. Sprawia ona że gwint jest znacznie gładszy na wejściu i nie ma możliwości zacięcia przy wkręcaniu. Można go spotkać pod nazwami “Quick Start Threads” albo“Blunt Start Threads”.

Tak wyglądają prawidłowo wykonany gwint Higbee:

Higbee najczęściej jest wykorzystywany w przemyśle Oil/Gas i w pożarnictwie. I to właśnie z myślą o strażakach ten rodzaj gwintu został wymyślony. Węże miały się łączyć szybko i bez zacięć. W strażackim Higbee pierwszy zwój jest całkowicie usunięty, dopiero na drugim jest wykonane gładkie wejście.

Ale jak to się robi?

Naszym celem jest usunięcie początkowej części nitki, która jest zwykle małą płetwą na ok 1/8 obwodu, stopniowo rozszerzająca się do prawidłowego zarysu gwintu. Aby ją usunąć należy użyć noża do rowkowania, po skończonym gwintowaniu.

W pierwszej kolejności musimy skalibrować nóż do gwintowania z naszym przecinakiem.

Jeśli zgrałeś te dwa noże ze sobą, musisz to jakoś rozpisać.

Załóżmy, że masz do wykonania gwint ze skokiem 3mm. Na 30mm wychodzi 10 zwoi minus jeden. Ten jeden to jest właśnie ta niepełna nitka, którą chcesz usunąć.

Zaprogramuj przecinak tym samym cyklem (np. G76) co nóż do gwintowania, tylko zamiast Z-30 wpisz Z-3, czyli długość jednej nitki. Wykonaj kilka przejazdów gratujących i dograj gładkie dno zmieniając X początkowy.

Prędkość obrotowa wrzeciona i szybkie przejazdy.

Te dwie wartości odpowiadają za kąt wyjścia rampy gradującej. Prędkość szybkich przejazdów jest stała ( a ich właśnie maszyna używa przy wyjeździe z materiału). Dla prostego wyjścia należy użyć mniejszych obrotów. Jeśli chcesz uzyskać bardziej gładkie wyjście należy zaprogramować większe obroty.

Jeśli twoja maszyna maszyna przyjmuje kod G32/G33 sprawa jest jeszcze prostsza. Wystarczy zaprogramować wyjście z gwintu dobierając odpowiedni posuw do głębokości gwintu.

Mam nadzieję, że pomogłem.

Pozdrawiam PrzemoCNC

31) Poprawa gwintów na tokarce CNC

Co jakiś czas piszecie do mnie z pomysłami na wpisy. Jest kilka, które się powtarzają. Jednym z nich jest poprawa gwintów na tokarce CNC.

Sprawa jest prosta jeśli gwint jest zbyt ciasny, ale detal jeszcze nie ściągnięty z maszyny. Przybieramy powiedzmy 0,05mm puszczamy gwintowanie od nowa. Sztuka poprawiona, a jak nie to do skutku przybieramy.

Temat się trochę komplikuje gdy detal już ściągniemy z maszyny . Przecież nikt nie zaznacza na wałku, w którym miejscu trzymała, która szczęka. Jest jeszcze ciekawiej gdy gwint był wykonany na innej maszynie na drugim końcu świata.

Na manualnych tokarkach na przekładni ustawia się skok i za pomocą tzw szufladki

ustawia się nóż po środku gwintu. Teraz wystarczy przybierać w X i gwint poprawiany.

Przypadku tokarek CNC jest podobnie, tylko zamiast ustawiać nóż po środku zwoju za pomocą szufladki, należy zmieniać wartość Z początkową. Oczywiście przed tymi próbami należy odbić w X o taką wartość żeby nóż był na bezpiecznej wysokości, czyli nad materiałem i z góry trzeba obserwować w którym miejscu zwoju się on znajduje.

Załóżmy że Z początkowy to 5. Puściłeś gwintowanie i widzisz że nóż trzyma się za bardzo prawej strony nitki. W tym momencie należy zmniejszyć wartość początkową Z. Powiedzmy zmieniłeś z 5 na 3. Po puszczeniu programu widać że teraz nóż przesunął się za bardzo w stronę lewej ścianki. No to zmieniasz Z trochę na plus czyli Z3.5. Na pierwszy rzut oka wydaje się, że jest OK.Ale nie przybierasz w X na wymiar. Stopniowo zmniejszasz, powiedzmy połowę wartości i puszczasz jeszcze raz.

Tak to powinno wyglądać

Jeśli wydaje Ci się, że jest źle, korygujesz w odpowiednią stronę. Jak jest Ok to przybierasz dla bezpieczeństwa jeszcze połowę tego co zostało . I tak aż do 0.

Oczywiście są maszyny z opcją naprawiania gwintu. Niestety nie każdy ma do nich dostęp. Zostaje nam wtedy mój sposób. Chyba że masz jakiś lepszy. Podziel się nim w komentarzu.

Pozdrawiam i zapraszam do śledzenia moich wpisów. Jeśli chcesz być na bieżąco, po prawej stronie możesz się zapisać do Newslettera.

30) G05.1 Q1. Precyzyjna kontrola konturu

Żeby wyjaśnić znaczenie tego kodu muszę zacząć od samego początku, czyli końcówki lat 90-tych. To wtedy powstała koncepcja HSM (High Speed Machining).

Zwiększenie wydajności usuwania materiału jest głównym celem. Ponieważ zwiększona szybkość usuwania przekłada się na skrócenie czasu cyklu maszyny. Z czasem HSM zaczęło zyskiwać na popularności i stało się jasne, że trzeba będzie wprowadzić zmiany w budowie maszyn i oprogramowaniu.

Do tej pory większość maszyn oparta była budowie skrzyniowej. Maszyny były sztywne ale było to powiązane ze sporą masą i objętością maszyny.

I tu pojawia się fizyka

Są dwa prawa Newtona interesujące nas w tym momencie:

  • Pierwsze prawo ruchu Newtona dotyczy siły bezwładności.
    Nie będę zanudzał Cię regułkami, ale w skrócie: Im cięższy przedmiot tym ma większą bezwładność. Co za tym idzie : potrzeba więcej energii do zatrzymania takiego przedmiotu
  • Drugie prawo ruchu Newtona dotyczy przyspieszenia.
    siła = masa x przyspieszenie (F = ma). Większa masa wymaga również więcej energii, aby osiągnąć przyspieszenie wymagane dla HSM.

Ponieważ nie możemy zmienić praw fizyki,musiała się zmienić konstrukcja maszyn. Zmniejszono masę aby umożliwić wyższe prędkości przyspieszenia. Prowadnice liniowe są obecnie preferowane w maszynach , które będą wykonywać obróbkę z dużą prędkością.

Wyższe szybkości przyspieszania powodują również inny problem. Jest nim siła bezwładności podczas szybkich zmian kierunku. Są one nieodłącznie związane z HSM, więc każdy system sterowania CNC zdolny do obsługi HSM musi być w stanie dostosować przyspieszenie i opóźnienie, aby osiągnąć płynny, najbardziej dokładny i ciągły ruch na maszynie.

Aby rozwiązać ten problem ulepszono również systemy sterowania CNC. Od teraz zapewniają one użytkownikom możliwość zrównoważenia prędkości i dokładności w razie potrzeby.

Oryginalny tryb wysokiej prędkości FANUC nazywał się HPCC,
(High Precision Contour Control). Został zbudowany na podstawie architektury chipowej RISC (Reduced Instruction Set Computing). Dzięki znacznym postępom w technologii mikroprocesorowej oryginalny HPCC stał się przestarzały. Nowsze mikroprocesory pozwoliły na znacznie bardziej złożone przetwarzanie przy znacznie większych prędkościach.

Najnowsze tryby High Speed ​​FANUC to AICC i AIAPC-AI Contour Control i AI Advanced Preview Control. AI nie odnosi się do „Sztucznej inteligencji”. AI reprezentuje system serwo Alpha I serii FANUC. Istnieją różnice między dwoma trybami AI. Jednak składnia ich używania jest dokładnie taka sama.

Tu pojawia się nasza formułka

G05.1 Q1 Rxx

Rxx zapewnia użytkownikowi opcję wyboru spośród 10 stałych ustawień (R1-R10), które kontrolują prędkość ścieżki narzędzia (prędkość posuwu) z dokładnością pozycjonowania.

G05.1 Q1 R1 – Prędkość ścieżki narzędzia ma pierwszeństwo przed dokładnością
G05.1 Q1 R2
G05.1 Q1 R3
G05.1 Q1 R4
G05.1 Q1 R5 – Prędkość i dokładność pozycjonowania mają równy priorytet
G05.1 Q1 R6
G05.1 Q1 R7
G05.1 Q1 R8
G05.1 Q1 R9
G05.1 Q1 R10 – Dokładność pozycjonowania ma pierwszeństwo przed prędkością

W celu wyłączenia precyzyjnej kontroli należy wpisać:

G05.1 Q0

G05.1 Q2 FANUC Smooth Interpolation.
G05.1 Q3 to funkcja wygładzania FANUC Nano Smoothing
FANUC Smooth Interpolation i NANO Smoothing to funkcje opcjonalne.

Stosując G05.1 Q1 podczas obróbki 2D, AICC / AIAPC rozwiązuje typowe problemy z zaokrąglaniami narożników lub wypaczeniami.

Po włączeniu naszej funkcji podczas obróbki 3D, AICC / AIAPC utrzyma dokładniejszy profil konturowania.

Zastosowanie precyzyjnej kontroli może skrócić czas obróbki rdzenia nawet o kilka godzin.

Wystarczy trzymać sie 4 prostych zasad:

  1. Upewnij się, że G49 jest zapisane przed G05.1 Q1 Rx
  2. G05.1 Q1 Rx należy włączyć przed G43
  3. AICC i AIAPC należy włączyć i wyłączyć dla każdego narzędzia
  4. AICC i AIAPC nie nie działa w cyklach wiercenia

Przykład 1:

Obróbka zgrubna

(PRZYKLAD 1)
(PRZEMOCNC)

G00 G17 G40 G49 G80 G94

T01 M6 (FREZ PALCOWY FI 5)
G05.1 Q1 R1  (HSM WŁĄCZONE OBRÓBKA ZGRUBNA)
G0 G90 G54 X1 Y-1 
S8000 M3
M8
G43 H01
Z1
G1 Z0 F150
X0 Y0 Z-0.2
.....
.....
.....
.....
G0 Z1
G05.1 Q0   (HSM WYŁĄCZONE)
M5
M9
G91 G28 Z0
G49
M30

W miejsce kropek wstawiasz swoją ścieżkę wygenerowaną z programu CAM lub napisaną ręcznie.

Przykład 2:

Obróbka wykańczająca

(PRZYKLAD 2)
(PRZEMOCNC)

G00 G17 G40 G49 G80 G94

T01 M6 (FREZ PALCOWY FI 5)
G05.1 Q1 R8  (HSM WŁĄCZONE OBRÓBKA wykańczająca)
G0 G90 G54 X1 Y-1 
S8000 M3
M8
G43 H01
Z1
G1 Z0 F120
X0 Y0 Z-0.2
.....
.....
.....
.....
G0 Z1
G05.1 Q0   (HSM WYŁĄCZONE)
M5
M9
G91 G28 Z0
G49
M30

Jeśli masz dostęp do frezarki i chcesz zobaczyć różnicę w czasie obróbki przygotowałem dla Ciebie dwa programy 1 2 . Przepuść program bez HSM (wystarczy włączyć / BLOK SKIP) następnie zmieniając parametr R zobaczysz jak zmieniają się czasy obróbcze.

Pozdrawiam i życzę powodzenia w optymalizacji 🙂

29) Tabela G kody frezarka Fanuc

Witam.

Przedstawiam Ci gotową tabelę z G kodami używanymi na frezarkach, oprogramowanie Fanuc.

Co tydzień będę starał się uzupełniać tabelę o nowe objaśnienia , pojawi się link. Dokładnie tak samo jak przypadku tabeli z G kodmi do tokarek

Klikając na opis zostaniesz przeniesiony na osobną stronę opisującą w jaki sposób użyć danego G kodu.

G kodOpis
G00Szybki przejazd
G01Ruch roboczy
G02Interpolacja kołowa zgodna z ruchem wskazówek zegara CWI
G03 Interpolacja kołowa przeciwna ruchowi wskazówek zegara CCW
G04Zwłoka czasowa
G05.1 Q1. Precyzyjna kontrola konturu
G07.1 Interpolacja cylindryczna
G09Dokładne zatrzymanie niemodalny
G10Wprowadzanie danych programowalnych
G11Odwołanie funkcji G10
G17Płaszczyzna główna X/Y i oś podłużna Z
G18Płaszczyzna główna Z/X oś podłużna Y
G19 Płaszczyzna główna Y/Z oś podłużna X
G20Wprowadzanie danych w calach
G21Wprowadzanie danych w milimetrach
G28Powrót do punktów referencyjnych maszyny
G30Powrót do drugiego trzeciego i czwartego punktu referencyjnego
G33Frezowanie gwintu, skok stały
G34Frezowanie gwintu, skok zmienny
G40Anulowanie kompensacji promienia narzędzia
G41Włączenie kompensacji promienia narzędzia lewostronny
G42Włączenie kompensacji promienia narzędzia prawostronny
G43 Włączenie kompensacji długości narzędzia +
G44Włączenie kompensacji długości narzędzia -
G49Anulowanie kompensacji długości narzędzia
G52Lokalny układ współrzędnych
G53Baza maszynowa (punkt zerowy maszyny)
G54Przesunięcie punktu zerowego maszyny 1
G55Przesunięcie punktu zerowego maszyny 2
G56Przesunięcie punktu zerowego maszyny 3
G57Przesunięcie punktu zerowego maszyny 4
G58Przesunięcie punktu zerowego maszyny 5
G59Przesunięcie punktu zerowego maszyny 6
G54.1 od P1 do P48Przesunięcie punktu zerowego maszyny
G65 Wywołanie Makra niemodalne
G66 Wywołanie Makra Modalne
G66.1Wywołanie Makra Modalne wersja 2
G67Odwołanie funkcji G66, G66.1
G68Rotacja współrzędnych
G69Odwołanie rotacji współrzędnych
G73Wiercenie z łamaniem wióra
G74 Cykl gwintowania. Gwint lewy
G76 Wytaczanie wykańczające
G80Wykasowanie cyklu
G81Wiercenie/ Nawiercanie
G82Wiercenie z przerwą czasową na dnie
G83Wiercenie z od-wiórowaniem
G84Cykl gwintowania. Gwint prawy
G85Rozwiercanie
G86Wytaczanie z zatrzymaniem wrzeciona przy wycofaniu
G87Wytaczanie w ruchu powrotnym
G88Wytaczanie z ręcznym wycofaniem narzędzia z otworu
G89Wytaczanie z przerwą czasową na dnie
G90Programowanie absolutne
G91Programowanie przyrostowe
G92Ustawienie współrzędnych, ograniczenie obrotów wrzeciona
G98Wycofanie narzędzia na płaszczyznę początkową
G99Wycofanie narzędzia na płaszczyznę retrakową