33) G07.1 Interpolacja cylindryczna

Powyższy kod jest opcjonalny a co za tym idzie nie wszystkie maszyny go czytają.

Najczęściej będzie Ci on potrzebny na tokarce wyposażonej w żywe narzędzie, ale nie tylko. Na frezarkach z czwartą osią obrotową również jest bardzo przydatną funkcją.

Więc do czego on służy?

Jakby to napisać najprościej? G07.1 spłaszcza oś obrotową.

Załóżmy, że mamy taki detal:

Programowanie takiego kształtu może być kłopotliwe, zwłaszcza w przypadku ruchów kołowych osią obrotową. I zapewne już się domyślasz, że interpolacja cylindryczna znacznie upraszcza pisanie. G07.1 pozwala programiście spłaszczyć ruchy osi obrotowej, traktując je jak ruchy osi liniowej.

Pierwszy obrazek pokazuje detal. Drugi pokazuje ten sam detal tylko kształt jest tak jakby rozwinięty.

Najlepiej zobrazuje to poprawnie zapisany program i symulacja tego programu:

Przykład 1:

Detal pokazany na wcześniejszym rysunku będzie wykonany na tokarce z żywym narzędziem i sterowaną osią C.

O0002 (PRZYKLAD 1 INTERPOLACJA CYLINDRYCZNA)
N15 T0505 (Frez palcowy fi 5mm)
N25 M13 (Włączenie obrotów na żywym narzędziu CW)
N30 G97 S2000
N32 M52 (Pozycjonowanie osi C włączone )
N35 G07.1 C19.1 (Uruchamiam interpolację cylindryczną / podaję promień detalu )
N37 G94 F200
N40 G0 X45 Z-5
N45 G1 X35 C0 Z-5
N50 G1 Z-15 C22.5
N55 Z-5 C45
N60 Z-15 C67.5
N65 Z-5 C90
N70 Z-15 C112.5
N75 Z-5 C135
N80 Z-15 C157.5
N85 Z-5 C180
N90 Z-15 C202.5
N95 Z-5 C225
N100 Z-15 C247.5
N105 Z-5 C270
N110 Z-15 C292.5
N115 Z-5 C315
N120 Z-15 C337.5
N125 Z-5 C360
N130 X45
N135 G07.1 C0 (Odwołuję interpolację)
N140 M53 (Wyłączam pozycjonowanie osi C)
N145 G0 X80 Z100 M15
N150 M30

I tym sposobem mamy kolejny G kod za sobą. Do następnego

Pozdrawiam Przemocnc

32) Gwintowanie Higbee

Gwint Higbee to modyfikacja istniejącego gwintu. Sprawia ona że gwint jest znacznie gładszy na wejściu i nie ma możliwości zacięcia przy wkręcaniu. Można go spotkać pod nazwami “Quick Start Threads” albo“Blunt Start Threads”.

Tak wyglądają prawidłowo wykonany gwint Higbee:

Higbee najczęściej jest wykorzystywany w przemyśle Oil/Gas i w pożarnictwie. I to właśnie z myślą o strażakach ten rodzaj gwintu został wymyślony. Węże miały się łączyć szybko i bez zacięć. W strażackim Higbee pierwszy zwój jest całkowicie usunięty, dopiero na drugim jest wykonane gładkie wejście.

Ale jak to się robi?

Naszym celem jest usunięcie początkowej części nitki, która jest zwykle małą płetwą na ok 1/8 obwodu, stopniowo rozszerzająca się do prawidłowego zarysu gwintu. Aby ją usunąć należy użyć noża do rowkowania, po skończonym gwintowaniu.

W pierwszej kolejności musimy skalibrować nóż do gwintowania z naszym przecinakiem.

Jeśli zgrałeś te dwa noże ze sobą, musisz to jakoś rozpisać.

Załóżmy, że masz do wykonania gwint ze skokiem 3mm. Na 30mm wychodzi 10 zwoi minus jeden. Ten jeden to jest właśnie ta niepełna nitka, którą chcesz usunąć.

Zaprogramuj przecinak tym samym cyklem (np. G76) co nóż do gwintowania, tylko zamiast Z-30 wpisz Z-3, czyli długość jednej nitki. Wykonaj kilka przejazdów gratujących i dograj gładkie dno zmieniając X początkowy.

Prędkość obrotowa wrzeciona i szybkie przejazdy.

Te dwie wartości odpowiadają za kąt wyjścia rampy gradującej. Prędkość szybkich przejazdów jest stała ( a ich właśnie maszyna używa przy wyjeździe z materiału). Dla prostego wyjścia należy użyć mniejszych obrotów. Jeśli chcesz uzyskać bardziej gładkie wyjście należy zaprogramować większe obroty.

Jeśli twoja maszyna maszyna przyjmuje kod G32/G33 sprawa jest jeszcze prostsza. Wystarczy zaprogramować wyjście z gwintu dobierając odpowiedni posuw do głębokości gwintu.

Mam nadzieję, że pomogłem.

Pozdrawiam PrzemoCNC

31) Poprawa gwintów na tokarce CNC

Co jakiś czas piszecie do mnie z pomysłami na wpisy. Jest kilka, które się powtarzają. Jednym z nich jest poprawa gwintów na tokarce CNC.

Sprawa jest prosta jeśli gwint jest zbyt ciasny, ale detal jeszcze nie ściągnięty z maszyny. Przybieramy powiedzmy 0,05mm puszczamy gwintowanie od nowa. Sztuka poprawiona, a jak nie to do skutku przybieramy.

Temat się trochę komplikuje gdy detal już ściągniemy z maszyny . Przecież nikt nie zaznacza na wałku, w którym miejscu trzymała, która szczęka. Jest jeszcze ciekawiej gdy gwint był wykonany na innej maszynie na drugim końcu świata.

Na manualnych tokarkach na przekładni ustawia się skok i za pomocą tzw szufladki

ustawia się nóż po środku gwintu. Teraz wystarczy przybierać w X i gwint poprawiany.

Przypadku tokarek CNC jest podobnie, tylko zamiast ustawiać nóż po środku zwoju za pomocą szufladki, należy zmieniać wartość Z początkową. Oczywiście przed tymi próbami należy odbić w X o taką wartość żeby nóż był na bezpiecznej wysokości, czyli nad materiałem i z góry trzeba obserwować w którym miejscu zwoju się on znajduje.

Załóżmy że Z początkowy to 5. Puściłeś gwintowanie i widzisz że nóż trzyma się za bardzo prawej strony nitki. W tym momencie należy zmniejszyć wartość początkową Z. Powiedzmy zmieniłeś z 5 na 3. Po puszczeniu programu widać że teraz nóż przesunął się za bardzo w stronę lewej ścianki. No to zmieniasz Z trochę na plus czyli Z3.5. Na pierwszy rzut oka wydaje się, że jest OK.Ale nie przybierasz w X na wymiar. Stopniowo zmniejszasz, powiedzmy połowę wartości i puszczasz jeszcze raz.

Tak to powinno wyglądać

Jeśli wydaje Ci się, że jest źle, korygujesz w odpowiednią stronę. Jak jest Ok to przybierasz dla bezpieczeństwa jeszcze połowę tego co zostało . I tak aż do 0.

Oczywiście są maszyny z opcją naprawiania gwintu. Niestety nie każdy ma do nich dostęp. Zostaje nam wtedy mój sposób. Chyba że masz jakiś lepszy. Podziel się nim w komentarzu.

Pozdrawiam i zapraszam do śledzenia moich wpisów. Jeśli chcesz być na bieżąco, po prawej stronie możesz się zapisać do Newslettera.

30) G05.1 Q1. Precyzyjna kontrola konturu

Żeby wyjaśnić znaczenie tego kodu muszę zacząć od samego początku, czyli końcówki lat 90-tych. To wtedy powstała koncepcja HSM (High Speed Machining).

Zwiększenie wydajności usuwania materiału jest głównym celem. Ponieważ zwiększona szybkość usuwania przekłada się na skrócenie czasu cyklu maszyny. Z czasem HSM zaczęło zyskiwać na popularności i stało się jasne, że trzeba będzie wprowadzić zmiany w budowie maszyn i oprogramowaniu.

Do tej pory większość maszyn oparta była budowie skrzyniowej. Maszyny były sztywne ale było to powiązane ze sporą masą i objętością maszyny.

I tu pojawia się fizyka

Są dwa prawa Newtona interesujące nas w tym momencie:

  • Pierwsze prawo ruchu Newtona dotyczy siły bezwładności.
    Nie będę zanudzał Cię regułkami, ale w skrócie: Im cięższy przedmiot tym ma większą bezwładność. Co za tym idzie : potrzeba więcej energii do zatrzymania takiego przedmiotu
  • Drugie prawo ruchu Newtona dotyczy przyspieszenia.
    siła = masa x przyspieszenie (F = ma). Większa masa wymaga również więcej energii, aby osiągnąć przyspieszenie wymagane dla HSM.

Ponieważ nie możemy zmienić praw fizyki,musiała się zmienić konstrukcja maszyn. Zmniejszono masę aby umożliwić wyższe prędkości przyspieszenia. Prowadnice liniowe są obecnie preferowane w maszynach , które będą wykonywać obróbkę z dużą prędkością.

Wyższe szybkości przyspieszania powodują również inny problem. Jest nim siła bezwładności podczas szybkich zmian kierunku. Są one nieodłącznie związane z HSM, więc każdy system sterowania CNC zdolny do obsługi HSM musi być w stanie dostosować przyspieszenie i opóźnienie, aby osiągnąć płynny, najbardziej dokładny i ciągły ruch na maszynie.

Aby rozwiązać ten problem ulepszono również systemy sterowania CNC. Od teraz zapewniają one użytkownikom możliwość zrównoważenia prędkości i dokładności w razie potrzeby.

Oryginalny tryb wysokiej prędkości FANUC nazywał się HPCC,
(High Precision Contour Control). Został zbudowany na podstawie architektury chipowej RISC (Reduced Instruction Set Computing). Dzięki znacznym postępom w technologii mikroprocesorowej oryginalny HPCC stał się przestarzały. Nowsze mikroprocesory pozwoliły na znacznie bardziej złożone przetwarzanie przy znacznie większych prędkościach.

Najnowsze tryby High Speed ​​FANUC to AICC i AIAPC-AI Contour Control i AI Advanced Preview Control. AI nie odnosi się do „Sztucznej inteligencji”. AI reprezentuje system serwo Alpha I serii FANUC. Istnieją różnice między dwoma trybami AI. Jednak składnia ich używania jest dokładnie taka sama.

Tu pojawia się nasza formułka

G05.1 Q1 Rxx

Rxx zapewnia użytkownikowi opcję wyboru spośród 10 stałych ustawień (R1-R10), które kontrolują prędkość ścieżki narzędzia (prędkość posuwu) z dokładnością pozycjonowania.

G05.1 Q1 R1 – Prędkość ścieżki narzędzia ma pierwszeństwo przed dokładnością
G05.1 Q1 R2
G05.1 Q1 R3
G05.1 Q1 R4
G05.1 Q1 R5 – Prędkość i dokładność pozycjonowania mają równy priorytet
G05.1 Q1 R6
G05.1 Q1 R7
G05.1 Q1 R8
G05.1 Q1 R9
G05.1 Q1 R10 – Dokładność pozycjonowania ma pierwszeństwo przed prędkością

W celu wyłączenia precyzyjnej kontroli należy wpisać:

G05.1 Q0

G05.1 Q2 FANUC Smooth Interpolation.
G05.1 Q3 to funkcja wygładzania FANUC Nano Smoothing
FANUC Smooth Interpolation i NANO Smoothing to funkcje opcjonalne.

Stosując G05.1 Q1 podczas obróbki 2D, AICC / AIAPC rozwiązuje typowe problemy z zaokrąglaniami narożników lub wypaczeniami.

Po włączeniu naszej funkcji podczas obróbki 3D, AICC / AIAPC utrzyma dokładniejszy profil konturowania.

Zastosowanie precyzyjnej kontroli może skrócić czas obróbki rdzenia nawet o kilka godzin.

Wystarczy trzymać sie 4 prostych zasad:

  1. Upewnij się, że G49 jest zapisane przed G05.1 Q1 Rx
  2. G05.1 Q1 Rx należy włączyć przed G43
  3. AICC i AIAPC należy włączyć i wyłączyć dla każdego narzędzia
  4. AICC i AIAPC nie nie działa w cyklach wiercenia

Przykład 1:

Obróbka zgrubna

(PRZYKLAD 1)
(PRZEMOCNC)

G00 G17 G40 G49 G80 G94

T01 M6 (FREZ PALCOWY FI 5)
G05.1 Q1 R1  (HSM WŁĄCZONE OBRÓBKA ZGRUBNA)
G0 G90 G54 X1 Y-1 
S8000 M3
M8
G43 H01
Z1
G1 Z0 F150
X0 Y0 Z-0.2
.....
.....
.....
.....
G0 Z1
G05.1 Q0   (HSM WYŁĄCZONE)
M5
M9
G91 G28 Z0
G49
M30

W miejsce kropek wstawiasz swoją ścieżkę wygenerowaną z programu CAM lub napisaną ręcznie.

Przykład 2:

Obróbka wykańczająca

(PRZYKLAD 2)
(PRZEMOCNC)

G00 G17 G40 G49 G80 G94

T01 M6 (FREZ PALCOWY FI 5)
G05.1 Q1 R8  (HSM WŁĄCZONE OBRÓBKA wykańczająca)
G0 G90 G54 X1 Y-1 
S8000 M3
M8
G43 H01
Z1
G1 Z0 F120
X0 Y0 Z-0.2
.....
.....
.....
.....
G0 Z1
G05.1 Q0   (HSM WYŁĄCZONE)
M5
M9
G91 G28 Z0
G49
M30

Jeśli masz dostęp do frezarki i chcesz zobaczyć różnicę w czasie obróbki przygotowałem dla Ciebie dwa programy 1 2 . Przepuść program bez HSM (wystarczy włączyć / BLOK SKIP) następnie zmieniając parametr R zobaczysz jak zmieniają się czasy obróbcze.

Pozdrawiam i życzę powodzenia w optymalizacji 🙂

29) Tabela G kody frezarka Fanuc

Witam.

Przedstawiam Ci gotową tabelę z G kodami używanymi na frezarkach, oprogramowanie Fanuc.

Co tydzień będę starał się uzupełniać tabelę o nowe objaśnienia , pojawi się link. Dokładnie tak samo jak przypadku tabeli z G kodmi do tokarek

Klikając na opis zostaniesz przeniesiony na osobną stronę opisującą w jaki sposób użyć danego G kodu.

G kodOpis
G00Szybki przejazd
G01Ruch roboczy
G02Interpolacja kołowa zgodna z ruchem wskazówek zegara CWI
G03 Interpolacja kołowa przeciwna ruchowi wskazówek zegara CCW
G04Zwłoka czasowa
G05.1 Q1. Precyzyjna kontrola konturu
G07.1 Interpolacja cylindryczna
G09Dokładne zatrzymanie niemodalny
G10Wprowadzanie danych programowalnych
G11Odwołanie funkcji G10
G17Płaszczyzna główna X/Y i oś podłużna Z
G18Płaszczyzna główna Z/X oś podłużna Y
G19 Płaszczyzna główna Y/Z oś podłużna X
G20Wprowadzanie danych w calach
G21Wprowadzanie danych w milimetrach
G28Powrót do punktów referencyjnych maszyny
G30Powrót do drugiego trzeciego i czwartego punktu referencyjnego
G33Frezowanie gwintu, skok stały
G34Frezowanie gwintu, skok zmienny
G40Anulowanie kompensacji promienia narzędzia
G41Włączenie kompensacji promienia narzędzia lewostronny
G42Włączenie kompensacji promienia narzędzia prawostronny
G43 Włączenie kompensacji długości narzędzia +
G44Włączenie kompensacji długości narzędzia -
G49Anulowanie kompensacji długości narzędzia
G52Lokalny układ współrzędnych
G53Baza maszynowa (punkt zerowy maszyny)
G54Przesunięcie punktu zerowego maszyny 1
G55Przesunięcie punktu zerowego maszyny 2
G56Przesunięcie punktu zerowego maszyny 3
G57Przesunięcie punktu zerowego maszyny 4
G58Przesunięcie punktu zerowego maszyny 5
G59Przesunięcie punktu zerowego maszyny 6
G54.1 od P1 do P48Przesunięcie punktu zerowego maszyny
G65 Wywołanie Makra niemodalne
G66 Wywołanie Makra Modalne
G66.1Wywołanie Makra Modalne wersja 2
G67Odwołanie funkcji G66, G66.1
G68Rotacja współrzędnych
G69Anulowanie rotacji współrzędnych
G73Wiercenie z łamaniem wióra
G74Gwintowanie lewego gwintu z uchwytem kompensującym
G76Wytaczanie wykańczające
G80Wykasowanie cyklu
G81Wiercenie, nawiercanie
G82Wiercenie z przerwą czasową na dnie
G83Wiercenie z odwiórowaniem
G84Gwintowanie prawego gwintu z uchwytem kompensującym
G85Rozwiercanie
G86Wytaczanie z zatrzymaniem wrzeciona przy wycofaniu
G87Wytaczanie w ruchu powrotnym
G88Wytaczanie z ręcznym wycofaniem narzędzia z otworu
G89Wytaczanie z przerwą czasową na dnie
G90Programowanie absolutne
G91Programowanie przyrostowe
G92Ustawienie współrzędnych, ograniczenie obrotów wrzeciona
G98Wycofanie narzędzia na płaszczyznę początkową
G99Wycofanie narzędzia na płaszczyznę retrakową

28) Programowanie promieni za pomocą parametru R i kodu G01

Ostatnio pisałem jak programować kąty za pomocą parametru A i fazy za pomocą parametru C.

Dzisiaj pokaże Ci jak robić promienie bez używania G02 lub G03, zapisując tylko jedną współrzędną X lub Z.

W szkole lub na kursie nauczyciel zapewne recytował z książek:

Aby wykonać promień należy zapisać kierunek i wartość promienia, jego początek i koniec. Mało tego, trzeba znać odległość początku i końca promienia od jego środka.

Owszem tak było kiedyś. Dzisiaj maszyn potrzebujących aż tyle informacji już jest bardzo mało i naprawdę musiałbyś mieć „nieszczęście”, żeby trafiła Ci się praca na takiej. Od lat 90-tych maszynom wystarczy początek i koniec promienia oraz jego wartość. Ale i to nawet nie do końca. Zasada ta tyczy się tylko niepełnych promieni.
Ja dzisiaj pokażę Ci, że promień można zaprogramować nawet bez użycia G02/G03.

Mogą to być promienie zewnętrzne i wewnętrzne. Lewostronne i prawostronne. Zasada jest jedna musi to być pełny promień.

To jest nasz rysunek:

Zapiszę te promienie za pomocą G01:

(PROGRAM Z PARAMETREM R)
(PRZEMOCNC)
 
N10 G54 T0101
N20 G50 S2000
N30 G96 S150 M3
 
N40 G0 G42 X0 Z1
N50 G1 Z0 F0.3
N60 X40 R10
N70 Z-20 R3
N80 X80 R3
N90 Z-50 R1
N100 X90 R2
N110 Z-90 R4
N120 X102
N130 G0 G40 Z1
 
N140 G28 U0 W0
N150 M30

Proste co nie.

Należy pamiętać o dwóch ważnych rzeczach

  • Początek ruchu narzędzia musi być na pozycji wcześniejszej niż początek promienia
  • Koniec ruchu narzędzia w następnym bloku musi być dalej niż koniec promienia

Maszyna sama dobierze kierunek promienia zależnie od wartości Z lub X w następnym bloku.

Jeśli masz jakieś dodatkowe pytania nie zastanawiaj się tylko pisz w komentarzu lub za pomocą zakładki kontakt.

Pozdrawiam PrzemoCNC

27) Programowanie fazy za pomocą parametru C

Ostatnio pisałem jak programować dowolne kąty za pomocą parametru A.

Bardzo często klient zaznacza na rysunku fazy. Mają one różną długość, ale kąt jest ten sam: 45°. Aby zmniejszyć pisanie do minimum określa się ich długość za pomocą literki C.

To jest nasz dzisiejszy detal:

Cztery różne fazy. Gdybym chciał to zapisać tradycyjnie, program wyglądałby tak:

(PROGRAM BEZ PARAMETRU C)
(PRZEMOCNC)

N10 G54 T0101
N20 G50 S2000
N30 G96 S150 M3

N40 G0 G42 X0 Z1
N50 G1 Z0 F0.3
N60 X20
N70 X40 Z-10
N80 Z-20
N90 X70
N100 X80 Z-25
N110 Z-50
N120 X86
N130 X90 Z-52
N140 Z-90
N150 X98
N160 X100 Z-91
N170 Z-95 
N180 U1
N190 G0 G40 Z1

N200 G28 U0 W0
N210 M30

No ale my przecież znamy parametr C. Dla tego program zapiszemy tak:

(PROGRAM Z PARAMETREM C)
(PRZEMOCNC)

N10 G54 T0101
N20 G50 S2000
N30 G96 S150 M3

N40 G0 G42 X0 Z1
N50 G1 Z0 F0.3
N60 X40 C10
N70 Z-20
N80 X80 C5
N90 Z-50
N100 X90 C2
N110 Z-90
N120 X100 C1
N130 Z-95 
N140 U1
N150 G0 G40 Z1

N160 G28 U0 W0
N170 M30

Łatwiej?

Krócej?

W następnym wpisie pokażę Ci jak zapisywać pełne promienie bez używania G02 lub G03.

Pozdrawiam PrzemoCNC

26) Programowanie kątów za pomocą parametru A.

Będąc programistą, często jest tak, że dostajesz rysunek detalu, półfabrykat i termin na wczoraj. Rysunek jak to rysunek, często niedowymiarowany. Masz kąt, brakuje współrzędnej końca albo początku tego kąta. Co zrobić?

Są trzy opcje

  • Rysujesz detal od nowa na komputerze i znajdujesz brakujące wymiary.
  • Ściągasz apkę ( np. CNC Taper) na telefon i szukasz potrzebnych wymiarów.
  • Programujesz za pomocą parametru A

Dzisiaj interesuje nas opcja nr 3.

Powtarzam to bez przerwy: Nie ma sensu utrudniać sobie życia jeśli jest opcja żeby wykonać coś łatwiej lub szybciej.

Mam taki rysunek:

Do programowania kąta wykorzystam parametr A.

No to piszemy :

(PARAMETR A)
(PRZEMOCNC)


G54 T0101
G50 S2000
G96 S150 M3

G0 G42 X0 Z1
G1 Z0 F0.3
X60
X79.83 A18
Z-50.63
X119.74 A34
X179.61
X199.57 A27
U1
G0 G40 Z1


G28 U0 W0
M30

Tak więc widzisz ułatwienie jest spore. Jest sporo programistów którzy mimo, że rysunki są poprawnie zwymiarowane, wolą pisać programy w ten sposób.

Jedyny problemem może być na początku wybadanie jak zdefiniowane są kąty na danej maszynie. Z doświadczenia wiem, że nie ma reguły.

To co na jednej maszynie jest kątem 90st, na innej będzie 270.

Teoretycznie powinno to wyglądać w ten sposób:

Jak jest u Ciebie, musisz sam wybadać puszczając symulację programu na maszynie lub wyczytać w instrukcji dołączonej do niej.

Dzisiejszy wpis był jednym z kilku na zasadzie tips and tricks. W następnych opiszę jak programować pełne promienie i fazy używając parametrów R i C

25) G97 Odwołanie stałej prędkości skrawania

Dzisiaj będzie krótko, bo w sumie nie ma się bardzo nad czym rozpisywać.

G97 ma tylko jedno zadanie. Jest nim odwołanie stałej prędkości skrawania. Czym ona jest pisałem już tutaj.

Załóżmy, że na początku programu obrabiasz detal ze stałą prędkością skrawania i przychodzi czas, powiedzmy na nacinanie gwintu. Należy wpisać:

G97 S300 M3

I uchwyt będzie się kręcił z prędkością 300 obr/min.

Jeśli potem dalej będziesz chciał używać stałych obrotów, nie trzeba już wpisywać G97. Wystarczy samo :

S200 M3

Tak jak pisałem na początku, Dzisiaj krótko.

Pozdrawiam. Przemocnc

24) G98 / G99 Posuw m/min / mm/obr Tokarka

G98 / G99 na frezarkach i na tokarkach ma rożne znaczenia. Nie będę się rozpisywał o frezarkach bo przyjdzie na to jeszcze czas. Dzisiaj wyjaśnię ci co się stanie po wpisaniu tych dwóch kodów na tokarce CNC.

Podczas pisania ruchów roboczych narzędzia musimy określić posuw . Czyli z jaką prędkością narzędzie ma się poruszać. Można go wyrazić na dwa sposoby:

  • G98– m/min
  • G99– mm/obr

Gdybyś chciał używać posuwu m/min wystarczy w bloku poprzedzającym ruch liniowy wpisać G98. To tyle od teraz zadany posuw maszyna będzie czytać w m/min.

G99 nie trzeba wpisywać, no chyba że odwołujemy G98

Na tokarkach domyślnie używa się posuwu w mm/obr. Dlaczego?

Pozwala nam to oszczędzić mnóstwo czasu, który musielibyśmy spędzić na obliczeniach.

Przy frezowaniu sprawa jest prosta: obracające się narzędzie ma określoną średnicę i na 100% ona się nie zmieni podczas pracy. Dlatego możemy założyć stały posuw i obroty dla danego narzędzia i wyrazić go w m/min, a prędkość skrawania będzie dokładnie taka jaką sobie założyliśmy.

W tokarkach sprawa jest trochę bardziej skomplikowana. Co chwilę zmienia się średnica obrabianego przedmiotu. Obroty też nie są jednakowe. Aby to wszystko uprościć do maksimum stosuje się posuw w mm/obr i stałą prędkość skrawania G96. Uzależniamy posuw od obrotów. Resztę obliczeń wykonuje za nas maszyna.

Mógłbym wykonać te obliczenia, żeby pokazać Ci jak zmienia prędkość skrawania podczas zmiany średnicy, lub obrotów, ale nie będę Cię zanudzał, bo i tak pewnie ściągniesz sobie apkę na telefon, która za Ciebie wykona te wszystkie nudne obliczenia. Ja do przeliczeń używam CNC TOOLS.